B5	0.5280(1)	0.2302 (4)	0.5450(1)	0.051 (3)
Cl	0.4682 (2)	0.2837 (3)	0.5864 (4)	0.057 (3)
C2	0.4456 (3)	0.3707 (4)	0.5218 (5)	0.083 (4)
C3	0.3921 (3)	0.4212 (5)	0.5542 (6)	0.110 (5)
C4	0.3588 (3)	0.3867 (6)	0.6508 (7)	0.110 (5)
C5	0.3798 (3)	0.3015 (5)	0.7164 (5)	0.096 (5)
C6	0.4339 (2)	0.2495 (4)	0.6862 (4)	0.073 (3)
C7	0.6688 (2)	0.0401 (3)	0.5427 (3)	0.050 (3)
C8	0.7198 (2)	0.0626 (3)	0.6134 (4)	0.062 (3)
C9	0.7674 (2)	-0.0088 (4)	0.6287 (4)	0.071 (4)
C10	0.7649 (2)	-0.1048 (4)	0.5695 (4)	0.071 (4)
C11	0.7159 (2)	-0.1308 (4)	0.4991 (4)	0.082 (4)
C12	0.6682 (2)	-0.0582 (4)	0.4865 (4)	0.071 (3)
C13	0.6522 (3)	0.2197 (5)	0.3263 (5)	0.086 (4)
C14	0.5090 (3)	-0.0034 (4)	0.6776 (5)	0.069 (4)
HI	0.553 (2)	0.303 (3)	0.385(3)	0.07 (2)
H7	0.585 (1)	0.071 (2)	0.734 (3)	0.04(1)

Table 2. Selected geometric parameters (Å, °)

N1—N2	1.414 (5)	N3C14	1.463 (7)
N1—B5	1.399 (6)	N3—H7	0.88 (3)
N1-H1	0.83 (3)	N4—B5	1.446(6)
N2—B3	1.404 (6)	N4—B3	1.432 (6)
N2-C13	1.440 (7)	B5—C1	1.538 (6)
N3—N4	1.441 (4)	B3C7	1.547 (6)
N2	110.3 (3)	N3	124.3 (3)
N2-N1-H1	117 (2)	N3	124.7 (3)
B5N1H1	132 (2)	B5N4B3	110.9 (3)
N1-N2-B3	109.6 (3)	N1-B5-N4	104.2 (4)
N1	116.4 (4)	N1—B5—C1	124.0(4)
B3—N2—C13	133.8 (4)	N4—B5—C1	131.8 (4)
N4—N3—C14	110.4 (3)	N2—B3—N4	104.9 (4)
N4—N3—H7	101 (2)	N2—B3—C7	125.1 (4)
C14—N3—H7	115 (2)	N4—B3—C7	130.0(4)
B5—N1—N2—B3	-0.7 (4)	B5-N1-N2-C13	-176.5 (4)
N1—N2—B3—N4	-0.4 (4)	N4—B3—N2—C13	174.4 (4)
N2—N1—B5—N4	1.4 (4)	C7—B3—N2—C13	-3.0(7)
B3—N4—B5—N1	-1.7 (4)	C1—B5—N1—N2	-179.3 (4)
B5—N4—B3—N2	1.3 (4)	B5—N4—N3—C14	87.4 (4)
N3—N4—B5—N1	-178.6 (3)	B3—N4—N3—C14	-89.1 (4)
N3—N4—B3—N2	178.2 (3)	N4—B3—C7—C8	-83.7 (6)
N3N4B5C1	2.3 (6)	N1—B5—C1—C2	-4.1 (6)
N3—N4—B3—C7	-4.6 (6)		

The structure was solved by direct methods using *MULTAN77* (Main, Lessinger, Woolfson, Germain & Declercq, 1977). Refinement was by full-matrix least-squares methods; heavy atoms were refined anisotropically and H atoms isotropically using *Xtal3.0* (Hall & Stewart, 1990). Molecular graphics were drawn using *ORTEPII* (Johnson, 1976).

The authors thank the Fonds der Chemischen Industrie for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1263). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Barlos, K. & Nöth, H. (1980). Z. Naturforsch. Teil B, 35, 407–414.Boese, R. & Klingebiel, U. (1986). J. Organomet. Chem. 306, 295– 302.
- Dielkus, S., Drost, C., Herbst-Irmer, R., Klingebiel, U. & Pauer, F. (1994). Organometallics, 13, 3985–3989.
- Dirschl, F., Nöth, H. & Wagner, W. (1984). J. Chem. Soc. Chem. Commun. pp. 1533–1535.

Engelhardt, U. & Hartl, H. (1975). Acta Cryst. B31, 2098-2105.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Engelhardt, U. & Hartl, H. (1976). Acta Cryst. B32, 1133-1138.

- Engelhardt, U. & Park, S. S. (1995). Unpublished results.
- Hall, S. R. & Stewart, J. M. (1990). Editors. *Xtal3.0 Reference Manual*. Universities of Western Australia, Australia, and Maryland, USA.
- He, J. & Harrod, J. F. (1994). Can. J. Chem. 72, 1759-1763.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kumpfmüller, F., Nölle, D., Nöth, H., Pommerenning, H. & Staudigl, R. (1985). Chem. Ber. 118, 483–494.
- Larson, A. C. (1967). Acta Cryst. 23, 664-665.
- Main, P., Lessinger, L., Woolfson, M. M., Germain, G. & Declercq, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Nölle, D. & Nöth, H. (1978). Chem. Ber. 111, 469-473.
- Nöth, H. & Regnet, W. (1969). Chem. Ber. 102, 167-179.
- Nöth, H., Reichenbach, W. & Winterstein, W. (1977). Chem. Ber. 110, 2158-2167.
- Scheffler, B. (1989). Dissertation, Freie Universität Berlin, Germany.

Acta Cryst. (1996). C52, 3250-3252

3,7-Bis(2-thienyl)-1,5,2,4,6,8-dithiatetrazocine

Tosha M. Barclay,^a A. Wallace Cordes,^a Richard T. Oakley^b and Kathyrn E. Preuss^b

^aDepartment of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA, and ^bDepartment of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario NIG 2W1, Canada. E-mail: wcordes@comp.uark. edu

(Received 12 June 1996; accepted 3 September 1996)

Abstract

The title molecule, 3,7-bis(2-thienyl)-1,5,2,4,6,8-dithiatetrazocine, $C_{10}H_6N_4S_4$, is planar within 0.069 (5) Å and crystallizes in the monoclinic space group $P2_1/c$. There are two centrosymmetric molecules in the cell; these are stacked such that each eight-membered $C_2N_4S_2$ ring has a thienyl ring above and below it. The mean interplanar separation is 3.55 (2) Å.

Comment

The 1,5,2,4,6,8-dithiatetrazocine ring system is known for the structural dichotomy it displays as a function of the exocyclic 3,7-ligands (Ernst *et al.*, 1981): aryl substituents afford planar central rings, while amine groups induce a folding of the ring and the formation of a transannular $S \cdots S$ contact (Oakley, 1988). The thienyl group of the title compound, (I), results in a planar central ring with distances and angles [S—N = 1.556 (3), C-N = 1.326(4) Å, N-S-N = 126.6(2) and N-NC—N = $130.1(3)^{\circ}$] comparable with those reported for the phenyl, 4-methoxyphenyl (Ernst et al., 1981) and 4trifluoromethylphenyl (Boeré et al., 1993) compounds.

These distances suggest the existence of a delocalized 10π electron system. The thienyl substituents of the title structure are disordered. The disorder involves a 180° rotation of the C4-C5 bond such that only S2, C3 and H3 are affected. The disorder was modeled by a 0.80 to 0.20 occupancy of the two positions; the 0.20 atoms were constrained to difference map positions with displacement parameters equal to their 0.80 counterparts. The most favored position was used for Fig. 1 and Table 2 of this report, and the disordered

Fig. 1. ORTEPII (Johnsen, 1976) drawing of C10H6N4S2 with labeling scheme. The displacement ellipsoids are drawn at the 30% probability level. H atoms have artificially small temperature factors for clarity.

atoms of the minor component are S22, C32 and H32 in Table 1. Thienyl disorder of this type has been observed in a thienyl derivative of benzobis(1,2,5-dithiazole) (Kitamura, Tanaka & Yamashita, 1995, 1996).

Experimental

The title compound was first prepared in low yield (7%) from the reaction of 2-thienylamidine hydrochloride and sulfur dichloride (Amin & Rees, 1989). It is generated more efficiently (50% yield) by the reduction of 4-(2-thienyl)-1,2,3,5-dithiadiazolylium chloride with triphenylantimony in the presence of oxygen (Boeré et al., 1993). Crystals suitable for X-ray analysis were grown by slow crystallization from chlorobenzene, and were mounted on a glass fiber with silicon glue.

Mo $K\alpha$ radiation

Cell parameters from 24

 $0.42 \times 0.32 \times 0.12$ mm

 $\lambda = 0.7107 \text{ Å}$

reflections $\theta = 18 - 20^{\circ}$

 $\mu = 0.72 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.016$ $\theta_{\rm max} = 24.91^{\circ}$

 $h = 0 \rightarrow 8$

 $k = -6 \rightarrow 6$ $l = -19 \rightarrow 19$

3 standard reflections

frequency: 60 min

intensity decay: 1.6%

Block

Yellow

Crystal data

 $C_{10}H_6N_4S_4$ $M_r = 310.42$ Monoclinic $P2_1/c$ a = 6.9888 (10) Åb = 5.6836(5) Å c = 16.019(2) Å $\beta = 101.822 (11)^{\circ}$ $V = 622.80(13) \text{ Å}^3$ Z = 2 $D_{\rm r} = 1.66 {\rm Mg} {\rm m}^{-3}$ D_m not measured

Data collection Nonius CAD-4 diffractometer $\theta/2\theta$ scans Absorption correction: analytical $T_{\min} = 0.81, T_{\max} = 0.92$ 2245 measured reflections 1094 independent reflections 805 observed reflections $[I_{\text{net}} > 3\sigma(I_{\text{net}})]$

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} < 0.001$
R = 0.035	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.059	$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.05	Extinction correction: none
805 reflections	Atomic scattering factors
82 parameters	from International Tables
H-atom parameters not	for X-ray Crystallography
refined	(1974, Vol. IV, Table
$w = 1/[\sigma^2(F) + 0.0025F^2]$	2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
S1	0.78292 (14)	0.52035 (16)	0.05439 (6)	0.0573 (5)
S2	1.09462 (17)	1.1027 (2)	0.18792 (7)	0.0564 (7)
S22†	1.4280	1.0570	0.1046	0.0568
N1	0.9481 (4)	0.7058 (5)	0.08085 (16)	0.0495 (15)
N2	0.7776 (4)	0.3194 (5)	-0.01186 (16)	0.0510(15)

C1	1.2773 (6)	1.2986 (7)	0.2152 (2)	0.062 (2)
C2	1.4218 (6)	1.2746 (7)	0.1729 (2)	0.060 (2)
C3	1.3795 (7)	1.0956 (7)	0.1114 (3)	0.055 (2)
C32†	1.1750	1.0800	0.1850	0.0552
C4	1.2100 (5)	0.9720 (6)	0.11546 (19)	0.0443 (16)
C5	1.1199 (5)	0.9720 (8)	0.11546 (19) 0.06559 (18)	0.0443 (16) 0.0445 (16)

† 0.20 occupancy components of the disorder described in the Comment.

Table 2. Selected geometric parameters (Å, °)

· · · · ·			
\$1—N1	1.557 (3)	N2C5'	1.329 (4)
S1N2	1.554 (3)	C1C2	1.334 (6)
S2-C1	1.683 (4)	C2C3	1.406 (6)
S2—C4	1.712 (3)	C3C4	1.390(6)
N1-C5	1.324 (4)	C4—C5	1.466 (4)
N1-S1-N2	126.60 (16)	\$2C4C3	109.7 (3)
C1-S2-C4	91.48 (18)	S2—C4—C5	120.0 (2)
S1-N1-C5	141.8 (2)	C3-C4-C5	130.2 (3)
\$1—N2—C5 ⁱ	141.5 (3)	N1-C5-N2	130.1 (3)
S2-C1-C2	114.4 (3)	N1-C5-C4	114.8 (3)
C1-C2-C3	111.0 (4)	N2 ⁱ C5C4	115.1 (3)
C2-C3-C4	113.0 (4)		

Symmetry code: (i) 2 - x, 1 - y, -z.

The structure was solved using direct methods, with the H atoms placed in idealized positions (C—H = 0.95 Å).

Data collection: CAD-4/PC (Enraf-Nonius, 1994). Cell refinement: CAD-4/PC. Data reduction: DATRD2 in NRCVAX (Gabe, LePage, Charland, Lee & White, 1989). Program(s) used to solve structure: NRCVAX. Program(s) used to refine structure: NRCVAX. Molecular graphics: NRCVAX. Software used to prepare material for publication: NRCVAX.

Financial support at Guelph was provided by the Natural Science and Engineering Research Council of Canada (NSERC) and at Arkansas by the National Science Foundation (EPSCOR program). TMB acknowledges a DOE Graduate Fellowship and KEP acknowledges a NSERC Postgraduate Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1274). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Amin, M. & Rees, C. W. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 2495–2501.
- Boeré, R. T., Moock, K. H., Derrick, S., Hoogerdijk, W., Preuss, K., Yip, J. & Parvez, M. (1993). Can. J. Chem. 71, 473–486.
- Enraf-Nonius (1994). CAD-4/PC. Version 1.5. Enraf-Nonius, Delft, The Netherlands.
- Ernst, I., Holick, W., Rihs, G., Schomburg, D., Shoham, G., Wenkert, D. & Woodward, R. B. (1981). J. Am. Chem. Soc. 103, 1540–1544.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kitamura, C., Tanaka, S. & Yamashita, Y. (1995). J. Am. Chem. Soc. 117, 6791.
- Kitamura, C., Tanaka, S. & Yamashita, Y. (1996). Chem. Mater. 6, 570–578.
- Oakley, R. T. (1988). Prog. Inorg. Chem. 36, 299-391.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 3252-3256

Crystalline Complexes Involving Amino Acids. I. L-Argininium Hydrogen Squarate

Olyana Angelova,^a Velichka Velikova,^a Tsonko Kolev^b and Valentina Radomirska^b

^aBulgarian Academy of Sciences, Central Laboratory of Mineralogy and Crystallography, Rakovski str. 92, 1000 Sofia, Bulgaria, and ^bBulgarian Academy of Sciences, Institute of Organic Chemistry, Acad. G. Bonchev str. Build 9, 1113 Sofia, Bulgaria. E-mail: jmacicek@bgcict.acad.bg

(Received 24 January 1996; accepted 31 July 1996)

Abstract

The title compound, $C_6H_{15}N_4O_2^{\dagger}$. $C_4HO_4^{-}$, crystallizes in the triclinic space group P1 with two independent formula units in the unit cell. The arginine molecules are protonated zwitterions with the amino and guanidyl moieties each accepting a proton from the acid group and the squaric acid. The torsion angles along the central N-C-(CH₂)₃-N chains are -166.8(2), 165.7(2), 168.9 (2), $178.2 (2)^{\circ}$ in molecule I and -170.0 (1), 148.9 (2), 164.1 (2), 163.7 (2)° in molecule II, respectively. The C-C bond lengths within the squarate anions are consistent with a delocalized double bond around the hydroxyl-bearing C atom, 1.426(3) and 1.433 (3) Å versus 1.496 (3) and 1.491 (3) Å for the adjacent and opposite bonds, respectively. The crystal structure consists of alternate layers of squarate and argininium moieties stacked along the c axis. The adjacent layers are connected to each other through specific ion-pair interactions (salt bridges) between the guanidyl group of the argininium and the squarate moieties.

Comment

The search for new classes of organic compounds with large non-linear optical coefficients and enough photochemical resistance against laser light is directed towards compounds with high dipole moments, asymmetric conjugated π -electron systems and those which produce non-centrosymmetric crystals. This article is a part of a project investigating the non-linear optical properties of crystalline materials involving salts of optically active amino acids, amines and guanidine derivatives with oxocarbons – deltic, squaric, croconic and rhodisonic acids as well as their sulfur derivatives [see West (1980)].

The structures of the free arginine and its molecular complexes including arginine dihydrate (Karle & Karle, 1964), hydrochloride (Mazumdar, Venkatesan, Mez & Donohue, 1969), hydrochloride monohydrate (Dow, Jensen, Mazumdar, Srinivasan & Ramachandran, 1970), phosphate monohydrate (Aoki, Nagano & Iitaka,